圆柱的表面积教学设计
作为一位无私奉献的人民教师,很有必要精心设计一份教学设计,教学设计是实现教学目标的计划性和决策性活动。写教学设计需要注意哪些格式呢?以下是小编精心整理的圆柱的表面积教学设计,仅供参考,欢迎大家阅读。
圆柱的表面积教学设计1一、引入新课:
1.引入。
师:在上节课,老师布置同学们课后每人用纸板做一个圆柱体,你们带来了吗?这就是我们昨天刚刚认识的新的几何体朋友——圆柱,谁能向大家介绍一下你的这位几何新朋友?(★ 生答时要利用手中的道具)
2.激发兴趣。
【课件出示】罐头厂要制作一批圆柱形罐头盒,底面直径 10 厘米,高 30 厘米 。想请你帮设计部算一算,制作这样一个罐头盒至少需要多少铁皮?
师:“要求制作这样的一个罐头盒至少需要多少铁皮,实际上,用数学语言来说,就是求什么?”
师:这节课我们就一起来研究——怎样求圆柱的表面积。(板书:圆柱的表面积)
二、探究新知。
1.什么是“圆柱的表面积”?
师:以前我们学过长方体和正方体的表面积,你能说说圆柱的表面积指的是什么吗?和周围的同学研究一下。(学生分组讨论)
师:谁能用简炼的语言概括出:什么加什么就是圆柱的表面积?
(生:圆柱的侧面积 + 两个底面的面积就是圆柱的表面积。)(教师板书)
师:【课件演示这一过程】“你能用一个等式来概括这句话吗?”
师贴出——圆柱的表面积=圆柱的侧面积+两个底面的面积
也就是说,要求圆柱的表面积,必须知道哪两个条件?
2。圆柱的侧面积。
师:两个底面是圆形的,我们早就会求它的面积。//而它的侧面是一个曲面,怎样计算侧面积呢?这是我们这节课要解决的一个难点。(板书:侧面积)
①合作探究。
“请同学们利用自己手中的.圆柱体,小组研究一下——圆柱的侧面积该怎么求?
学生分组探究。
②汇报交流。★※★※★
师:哪个小组来汇报一下你们组的做法和结果?要到前面来,边汇报边演示你们的推导过程。
③.【课件演示变化过程】★师解说。
(贴出:圆柱的侧面积=底面周长×高 )
强化:“要求圆柱的侧面积,必须知道什么条件?”
3.学习例1。【课件出示】
一个圆柱,底面的直径是0.5米,高是1.8米,求它的侧面积。(得数保留两位小数。)
一人板演,全班齐练。
板演者讲解题思路。集体订正。
小结:我们在计算圆柱的侧面积时,必须知道什么条件?(底面周长和高。)可是有时候底面周长没有直接给出,我们可以根据底面直径或半径求出圆柱的底面周长。
4.计算圆柱的侧面积。
请同学们看屏幕——有这样几个圆柱体,你会求它们的侧面积吗?只列式,不计算。
【课件出示】
5.学习例2。
师出示手中的教具:这是老师用纸板制作的圆柱体。(高15厘米,底面半径15厘米)现在,老师想考考你:要制作这样一个圆柱体,至少需要多少平方厘米的纸板?
①弄清几个面:要求“制作这样一个圆柱体,至少需要多少平方厘米的纸板”,实际上就是求这个圆柱的什么? 老师手中这个圆柱体一共有几个面? 三个什么面?
【课件出示例2图】
②独立试算:(一个板演,全班齐练。)
③指名讲解题思路。
④小结:圆柱的表面积包括侧面积和底面积,要求圆柱的表面积,就是要求出这几个面的面积的总和。
⑤扩展:
a.刚才这道题是“已知底面半径和高,求圆柱的表面积。”如果是“已知底面直径和高”,该怎样求圆柱的表面积?
【课件出示例2改后的题】
b.师:如果是“已知圆柱的底面周长和高”,又该怎样求圆柱的表面积呢?
【课件出示例2改后的题】
学生口算。
★ 师:如果“已知圆柱的侧面积和底面半径,你会求这个圆柱的高吗?”
【课件出示】一个圆柱体的侧面积是188.4平方分米,底面半径是2分米。它的高是多少分米?
d.指名说解题思路。
三.实际应用。
【课件出示例3】一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米。)
①请同学们认真的默读题,想想:题目让我们求什么?应该怎么求呢?
②强调“没盖”,“得数保留整百平方厘米。”
③独立计算。
④板演者讲解题思路。(讲清每步算的是什么)
⑤了解“进一法”。
★强调:“这里不能用四舍五入法取近似值。在实际应用中,使用的材料都要比计算得到的结果多一些。 因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种求近似数的方法叫做进一法。”
⑥举一反三
师:同学们,老师这里带来了几种不同物体的图片,它们都有一个部分是圆柱。怎样求它们的表面积呢?
【课件出示】
★小结:在实际生活中计算某些圆柱的表面积时,要根据具体情况灵活计算。
四.巩固练习。
1.一顶厨师帽,高28厘米,帽顶直径20厘米,做这样一顶帽子至少需要多少面料?(得数保留整十平方厘米。)
2.砌一个圆柱形的水池,底面直径2.5米,深3米。在水池的周围与底面抹上水泥,抹水泥的面积是多少平方米?
3.回到引入题。
【课件出示】罐头厂要制作一批圆柱形罐头盒,底面直径 10 厘米 ,高 30 厘米 。现在请你帮设计部算一算制作这样一个罐头盒至少需要多少铁皮?
如果要制作200个呢?制作1000个呢?
想一想:工人师傅在制作它时就按照我们刚才求出的数据准备料,行吗?为什么?
师:如果给罐头盒贴一圈商标纸,你能算出每张商标纸的面积吗?
五.实践应用。
师:拿出自己制作的圆柱体,老师看看,谁的做的漂亮?(选出可以欣赏的。)
“现在你能算出自己包装的圆柱体各用了多少平方厘米的彩纸吗?请同学们课后测量出你所需要的数据,然后算出来。”
六.全课小结:
师:今天这节课我们学习了《圆柱的表面积》,谈谈你有什么收获?
师:你有没有想提醒同学们注意的地方?
教学目标:
1.知识目标:
⑴.理解圆柱的侧面积和表面积的含义。
⑵.掌握圆柱侧面积和表面积的计算方法。
⑶.会正确 ……此处隐藏16064个字……积的计算方法。在此过程中,学生把曲面转化成平面,开展了一系列的推理活动,空间观念和思维能力能够得到锻炼。
教学目标:
1、使学生理解和掌握圆柱体侧面积的计算方法,能正确运用公式计算圆柱的侧面积。
2、培养学生观察、操作、概括和思考的能力,以及灵活地分析、解决实际问题的能力。
3、培养学生的合作意识,让学生体验出探索、发现的快乐,激起热爱数学的情感。
教学重点:
圆柱侧面积的计算。
教学难点:
圆柱体侧面积计算方法的推导。
教法运用:
本节课我采用操作和演示、讲练相结合的教学方法。通过直观演示和实际操作,引导学生观察、思考和探索圆柱侧面积的'计算方法;同时将直观和抽象、新授和练习有机地融为一体,较好地突出教学重点、突破教学难点。
学法指导:
采取引导-放手-引导的方法,鼓励学生积极、主动地探求新知,运用化曲为平的方法推理发现侧面积的计算方法。
教具准备:
圆柱体教具、多媒体课件。
学具准备:
圆柱体纸筒、圆柱体物体、长方形纸、剪刀。教学过程:
一、复习导入,引入新知
1、复习圆柱体的特征
师:上节课,我们认识了圆柱,对圆柱体有了更深的理解,谁来说说它的特征? (指明学生回答后,课件动画展示同时师生小结)
- 1
四、课堂小结
1、本节课你有何收获?
2、教师小结:在解答实际问题前一定要先进行分析,灵活运用,选择合适的方法。
五、课后作业
应用本节课学到的知识,你会求圆柱的表面积吗?同学之间相互交流,试着推一推圆柱的表面积公式吧!附:板书设计
圆柱的侧面积=底面周长×
高→S侧=ch ↓
↑
↑长方形面积=
长
×
宽
教学反思
这节课,我在学生的认知发展水平和已有的知识经验基础上,深入钻研教材,引导学生合作探究,动手动脑,使学生学有所获。通过教学有如下感悟:
一、数学教学要注重数学思想和数学方法的渗透。
在本节课的教学中,我注重给学生渗透“转化”的数学思想方法,化曲面为平面,让学生经历观察、思考、操作等环节。课上我尽量让孩子们自己探索、发现。
二、重视学生的合作意识和实践能力的培养。
在教学圆柱侧面积计算方法时,我没有拘泥于教材上把侧面转化为长方形这一思路,而是放手学生合作探究:能否将这个曲面转化为学过的平面图形?鼓励学生大胆猜想和实验,把圆柱形纸筒剪开,结果学生根据纸筒的特点和剪法分别将曲面转化成了长方形、正方形、平行四边形等平面图形。通过观察和思考,最终都探讨出了侧面积的计算方法。在组织学生合作学习中,较好地培养了学生的合作探究能力。
三、合理利用现代化教学手段辅助教学。
侧面积计算公式的推导是本届的难点,在教学中,我适时利用了多媒体课件辅助教学,取得了较好的效果。直观形象的图片展示,不仅有利于学生审题,而且提高了课堂效率。
圆柱的表面积教学设计15教学内容:教科书第21-22页,练一练1、2题、练习六1-2题。
教学目标:
1、让学生经历操作、观察、比较和推理,发现圆柱侧面展开的形状,并能正确计算圆柱的侧面积。
2、理解圆柱表面积的含义,探究计算圆柱表面积的计算方法。
3、能正确运用公式计算圆柱的侧面积和表面积。
教学重点:
1、理解圆柱侧面积和表面积的意义。
2、培养学生观察、操作、概括的能力和利用所学知识解决实际问题的能力。
教学难点:能正确计算圆柱的侧面积和表面积。
教学具准备:圆柱形状的罐头,外面有可以展开的商标纸。
预习作业:
1、预习课本第21-22页的例2、例3。
2、掌握圆柱侧面积和体积的计算方法。
3、在作业本上完成第22页练一练第1题、第2题。
教学过程:
一、预习效果检测
1、圆柱的侧面积=
2、什么叫做圆柱的表面积?
3、圆柱的表面积=
4、一个圆柱,底面半径是2厘米,高是6厘米。求它的侧面积。
二、合作探究
(一)、教学例1
1、出示一个圆柱形的罐头,罐头的侧面贴了一张商标纸。
问:你能想办法算出这张商标纸的面积吗?
⑴拿出圆柱形的罐头,量出相关数据,在小组中讨论。
⑵交流:你们是怎么算的?
沿高展开,得到一个长方形商标纸,量出它的长和宽,再算出它的面积。
⑶讨论:商标纸的面积就是圆柱中哪个面的面积?
观察一下,展开后的长方形商标纸的长与宽,与圆柱中的什么有关?有什么关系?
使学生认识到:长方形的长就是圆柱的底面周长,宽就是圆柱的高。
2、出示例1中的罐头。
⑴师:这个罐头的侧面也有一张商标纸,如果不展开,能算出这张商标纸的`面积吗?测量什么数据比较方便?
⑵出示数据:底面直径11厘米高:15厘米
⑶学生算出商标纸的面积。
⑷交流:你是怎么算的?先算什么?再算什么?
如果知道的是底面半径,怎么算呢?
3、小结:算商标纸的面积,实际上就是算圆柱的侧面积。
追问:怎么算圆柱的侧面积?
根据学生回答板书:圆柱侧面积=底面周长×高
4、练习:完成“练一练”第1题。
(二)、教学例3
1、出示例3中的圆柱。
⑴问:如果将这个圆柱的侧面展开,得到的长方形的长和宽分别是多少厘米?
⑵让学生算一算后交流。师板书:
长:3.14×2=6.28(厘米)宽:2厘米
⑶圆柱的两个底面的直径和半径分别是多少厘米?
板书:直径2厘米半径1厘米
2、引导画出圆柱的展开图。
⑴这个圆柱有几个面?分别是什么?
⑵如果要画出这个圆柱的展开图,要画哪几个图形?分别画多大?
⑶在书上方格纸上画出这个圆柱的展开图。
⑷交流:你是怎么画的?
3、认识圆柱的表面积。
⑴讨论:什么是圆柱的表面?怎么算圆柱的表面积?
板书:圆柱的表面积=底面圆的面积×2+圆柱侧面积
⑵算出这个圆柱的表面积。
算后交流,提醒学生分步计算。
4、练习:完成“练一练”第2题。
(三)、全课总结
这节课我们学习了什么?(板书:圆柱的表面积)
三、当堂达标检测
1、完成练习六第1题。
2、完成练习六第2题。
文档为doc格式